MATH 119: Midterm 2 Name: $\frac{K<y}{2}$

Directions:

* Show your thought process (commonly said as "show your work") when solving each problem for full credit.
* If you do not know how to solve a problem, try your best and/or explain in English what you would do.
* Good luck!

Problem	Score
1	Points
2	10
3	10
4	10
5	10

50

1. Simplify these expressions:

$$
\begin{aligned}
& * 3 \sin ^{2}\left(-\frac{\pi}{3}\right)+3 \cos \left(\frac{11 \pi}{6}\right)+3 \tan (20 \pi) \\
= & 3\left(-\frac{\sqrt{3}}{2}\right)^{2}+3 \cdot \frac{\sqrt{3}}{2}+3 \cdot 0
\end{aligned}
$$

RoE \# 4 then \#5, $3 \cdot(-1)^{2} \cdot \frac{(\sqrt{3})^{2}}{2^{2}}+\frac{3 \sqrt{3}}{2}$ floc law \#1

$$
\begin{aligned}
& =3 \cdot \frac{3}{4}+\frac{3 \sqrt{3}}{2} \\
& =\frac{9}{4}+\frac{3 \sqrt{3}}{2} \cdot \frac{2}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Leo, for }=\frac{9+6 \sqrt{3}}{4} \\
& \text { low I then compared froctice, get id of nested fraction (see lion 1.4) } \\
& 3 \begin{array}{l}
\sec \theta-\cos \theta \\
\sin \theta
\end{array}=\frac{\frac{1}{\cos \theta}-\cos \theta}{\sin \theta} \cdot \frac{\cos \theta}{\cos \theta}
\end{aligned}
$$

$$
f_{\# 1}=\frac{\left(\frac{1}{\cos \theta}-\cos \theta\right) \cdot \cos \theta}{\sin \theta \cos \theta}
$$

$$
\underset{\text { law }}{\text { dist }} \frac{\frac{1}{\cos \theta} \cos \theta-\cos ^{2} \theta}{\sin \theta \cos \theta}
$$

$$
\text { froe lav } 5=\frac{1-\cos ^{2} \theta}{\sin \theta \cos \theta}
$$

$$
\begin{aligned}
\sin ^{2} \theta+\cos ^{2} \theta & =1 \\
& =\frac{\sin ^{2} \theta}{\sin \theta \cos \theta} \sin \theta
\end{aligned}
$$

$$
\text { fac law }^{=} \frac{\sin \theta}{\cos \theta}
$$

$$
=\tan \theta
$$

2. Short answer questions.
$\overleftrightarrow{\wedge}$ Justify each answer with formulas or facts for full credit; do not just write "yes" or "no" \downarrow.
(a) Given $f(x)=\sin (x)$, does there exist $x \in \mathbb{R}$ such that $f(x)=0.4$? Why or why not? Yes, x mpeosent the distort oud diction your
 you con walk to get to a y-coordinate of 0.4 .
(b) If a mass attached to a spring is moving in simple harmonic motion, can we use the function

$$
d(t)=a \sec (\omega t)
$$

to model it's displacement? Why or why not?
No, secant has vertical asymptotes, meaning $\sec (t) \longrightarrow \infty$ as x approcotios some value. Simple harmonic motion docs not have displacement which grows without bound.
(c) Is it possible for angular speed to be less than linear speed? Why or why not?

$$
\begin{aligned}
& \text { Yes, } \quad V=r \underbrace{v}_{\substack{\text { angeles } \\
\text { linear } \\
\text { speed }}} \\
& \text { if } r>1 \text { then }^{v} \omega<v .
\end{aligned}
$$

(d) When proving a trig identity, are we allowed to square both sides? Why or why not? No; you wold be assuming both sides are tine.
Morcour you could start with something false and squaring could turn that to a true statement. That would be argument from false premises.
3. Prove these identities:

$$
\begin{aligned}
& \text { * } \frac{(\sin x+\cos x)^{2}}{\sin x \cos _{\beta}}=2+\sec x \csc x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1+2 \sin x \cos x}{\sin x \cos x} \\
& \text { undo floc }_{=}^{=} \frac{1}{\sin x \cos x}+\frac{2 \cdot \sin x \cdot \cos x}{\sin x \cos x} \text { fran law 5 } \\
& \begin{array}{l}
=\frac{1}{\sin x} \cdot \frac{1}{\cos x}+2 \\
=\csc x \sec x+2=\text { RHS lon low \#1 } \\
= \\
\sin \left(\frac{\pi}{2}+x\right) \quad \text { "most in the middle" }
\end{array} \\
& L H S=\sin \left(\frac{\pi}{2}-x\right) \underset{\text { formula }}{\text { subtraction }} \sin \left(\frac{\pi}{2}\right) \cos (x)-\cos \left(\frac{\pi}{2}\right) \sin (x) \\
& =1 \cdot \cos (x)-0 \cdot \sin (x) \\
& =\cos (x) \\
& \text { RaMS }=\sin \left(\frac{\pi}{2}+x\right) \underset{\text { furavida }}{=} \sin \left(\frac{\pi}{2}\right) \cos (x)+\cos \left(\frac{\pi}{2}\right) \sin (x) \\
& =1 \cdot \cos (x)+0 \cdot \sin (x) \\
& =\cos (x)
\end{aligned}
$$

Since $\angle H S=$ RHS it is pron.
4. (a) A right triangle $A B C$ has one acute angle 45°. The hypotenuse is length $12 \sqrt{2}$. Solve the triangle.

For $\angle C$

$$
\begin{aligned}
\angle A+\angle B+\angle C & =180^{\circ} \\
45^{\circ}+90^{\circ}+\angle C & =180^{\circ} \\
\angle C & =180^{\circ}-135^{\circ}=45^{\circ}
\end{aligned}
$$

$$
\text { For a: } \begin{aligned}
& \sin \left(45^{\circ}\right)=\frac{a}{12 \sqrt{2}} \\
\quad a & =12 \sqrt{2} \sin \left(45^{\circ}\right)=12 \sqrt{2} \cdot \frac{\sqrt{2}}{2}=6 \cdot \sqrt{2} \sqrt{2}=6.2 \cdot \sqrt{12}
\end{aligned}
$$

Fur c: same calculation as a. $c=12$
You con also use the similar trimpore techrisece with the
(b) A central angle of 240° subtends an arc in a circle of radius 3 centimeters. Find the length of the arc.

(c) Evaluate $\tan \left(\sin ^{-1} \frac{\sqrt{2}}{2}\right)$.

$$
\begin{aligned}
\tan \left(\sin ^{-1} \frac{\sqrt{2}}{2}\right) & =\tan \left(\frac{\pi}{4}\right) \\
& =\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} \\
& =1
\end{aligned}
$$

5. Suppose a mass attached to a spring is moving in simple harmonic motion. The displacement $f(t)$ is shown in the following graph.

Here, t is measured in seconds and $f(t)$ is measured in centimeters.
(a) Find a function $f(t)$ describing the displacement.

$$
f(x)=3 \cos (\pi x)
$$

(b) How many centimeters is the mass displaced after one second?

$$
\begin{aligned}
f(1) & =3 \cos (\pi \cdot 1) \\
& =3 \cos (\pi) \\
& =3 \cdot(-1) \\
& =-3 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
& f(t)=a \cos \omega t \\
& \text { vertical stretch; } 3 \text { from above graph } \\
& \begin{array}{c}
\text { peoicl }=\frac{2 \pi}{\omega} \\
\downarrow=\frac{2 \pi}{\omega}
\end{array}
\end{aligned}
$$

